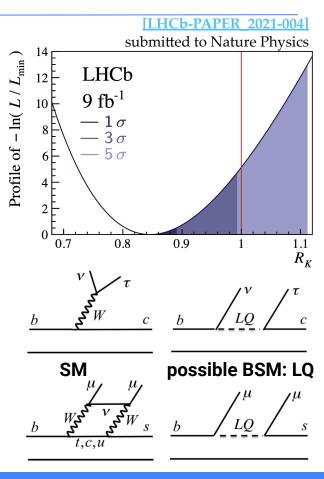
Searching for leptoquarks with the ATLAS detector

Stergios Kazakos (IFAE, UAB) on behalf of the ATLAS collaboration



^{*} The project that gave rise to these results received the support of a fellowship from "la Caixa" Foundation (ID 100010434). The fellowship code is LCF/BQ/IN18/11660049. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 713673.

Introduction

- Leptoquarks (LQs) are hypothetical particles with a fractional electric charge that couple simultaneously to a **lepton** and a **quark**.
- LQs were originally predicted in GUT (e.g. SU(5) unification models), but also appear in other BSM scenarios (RPV SUSY, compositeness models).
- Most favoured candidate to explain the **B-physics anomalies** which point to potential Lepton Flavour Universality (LFU) violation.
 - The anomalies manifest both in **charged** and **neutral current processes**.
 - The anomalies seem to persist in the latest LHCb measurement of R(K) ratio, with a deviation of 3.1σ from the SM!
- The simplest explanations of these anomalies involve either **a single vector LQ (U₁)**, or **two scalar leptoquarks** (a singlet S_1 , and a triplet S_3):
 - LQs will contribute with additional tree level diagrams!

Production and decay modes

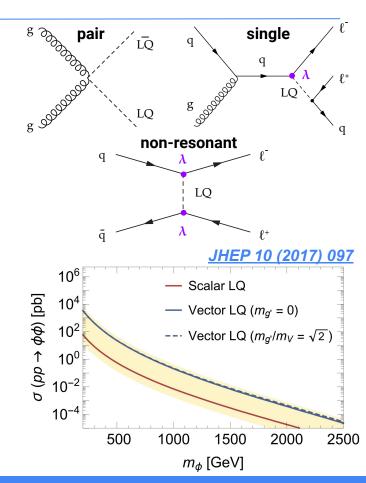
X Broad physics program of LQ searches with different final states:

- Based on the Buchmüller - Rückl - Wyler (BRW) model.

Phys. Lett. B 191 (1987) 442

- Targeting up- or down-type LQs (LQ^u \rightarrow Q = $\frac{2}{3}$, LQ^d \rightarrow Q = - $\frac{1}{3}$).
- LQ decays in 1^{st} , 2^{nd} or 3^{rd} generation particles (LQ₁, LQ₂, LQ₃).

 \uparrow The main LQ production modes are:


- 1) pair production (cross-section (σ) dominated by QCD, mostly dependent on the mass (resonant))
- 2) **single** production ($\sigma \propto \lambda^2$)
- 3) **non-resonant** production ($\sigma \propto \lambda^4$)

Current focus of this talk on **pair production** of **scalar LQs**:

- Targeting LQ decays into **flavour-diagonal** and **cross-generational** final states.
- Searches are ongoing also for the other production modes.
- Vector LQ models to follow later (higher cross-section).

 λ : Yukawa coupling of LQ to quarks and leptons

Covered signatures

★ Public results of analyses targeting pair production of **scalar LQs** decaying to the following categories:

	u/d/s	С	b	t	re-interpretations from SUSY analyses
e	Published in JHEP: <u>JHEP 10 (2020) 112</u>			Submitted to EPJC: arXiv: 2010.02098	flavour-diagonal
μ					with $B = 0.5$
τ				Submitted to JHEP: arXiv: 2101.11582	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$
				ONF note: NF-2021-008 Published in EPJC:	bt (* branching fraction B : relative coupling between $LQ \rightarrow q\ell$ and
ν			Submitted to JHEP: arXiv: 2101.12527	Eur. Phys. J. C 80 (2020) 737	LQ \rightarrow qv that controls the BR) LQ ₃ summary paper (36 fb ⁻¹) published in JHEP:
(* the entries in rows and columns denote the quark and lepton of the dominant decay mode)					JHEP 06 (2019) 144

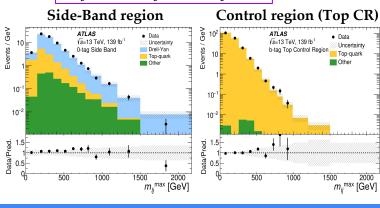
Stergios Kazakos DIS 2021 | 14-04-21

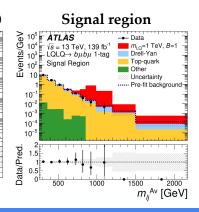
JHEP 06 (2019) 144

LQLQ \rightarrow qeqe / qµqµ (q = u, d, s, c, b)

- 🂢 First analysis on cross-generational LQ decays using dedicated **c-** and **b-jet identification algorithms**.
 - An inclusive selection is used for u/d/s channels (pre-tag).
- \star Region categorisation is based on m^{asym}:

$$m^{\text{asym}} = \frac{m_{\ell j}^{\text{max}} - m_{\ell j}^{\text{min}}}{m_{\ell j}^{\text{max}} + m_{\ell j}^{\text{min}}} < 0.4$$


SB: $0.2 < m^{asym} < 0.4$ CR, SR: $m^{asym} < 0.2$


Top-quark

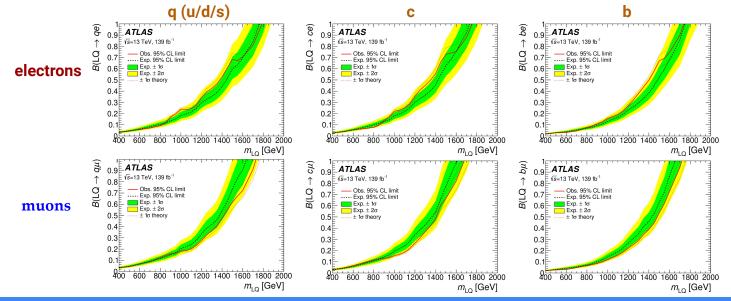
m_umax [GeV]

💢 Average reconstructed LQ mass used as final discriminant:

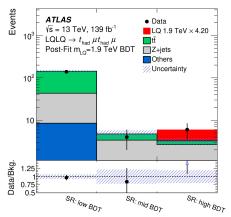
$$m_{\ell j}^{\mathrm{Av}} = (m_{\ell j}^{\mathrm{max}} + m_{\ell j}^{\mathrm{min}})/2$$

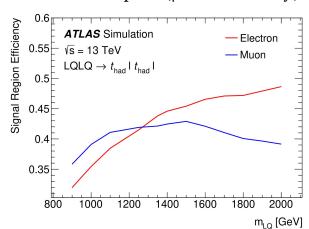
- \bigstar 2ℓOS, ≥ 2j selection
- $\mathbf{\chi}$ Main backgrounds from **Drell-Yan** and $\mathbf{t}\bar{\mathbf{t}}$ processes:
 - Their normalisations are left free floated in the fit as a single parameter.
 - Other backgrounds estimated from MC.
- \star Regions used in the fit:

ql channels: pre-tag SR + SB + Top CR (q = u/d/s)


cl channels: SR + SB in untagged, c-tag and b-tag categories are used together with the **Top CR** for c-tag and b-tag.

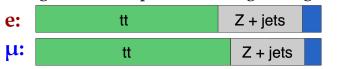
bl channels: **SR** + **SB** in 0-, 1-, and 2-tag categories are used together with the **Top CR** in 1- and 2-tag.

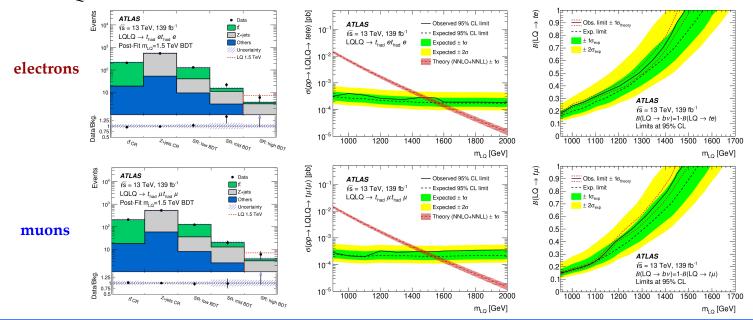

(Top CR: eμ selection, SB region: ee or μμ selection)


LQLQ \rightarrow qeqe / qµqµ (q = u, d, s, c, b)

- ★ Search range from **0.4** to **2.0 TeV**.
- ★ No significant excess observed over the SM background in all of the six categories.
- \star Exclusion limit is set as a function of mass and branching fraction (*B*):
 - m_{LO} < 1.8 TeV (1.7 TeV) excluded for electrons (muons) for B = 1, m_{LO} < 0.8 TeV excluded for B = 0.1
- ★ Improved sensitivity by about 300 400 GeV in LQ mass compared to previous scalar LQ searches.

- 🛨 Targeting the hadronic decay channel in the boosted regime:
 - 2ℓOS selection, requiring ≥ 2 large-R jets (R=1.0) to select the boosted tops
- \star Signal over background classification using a gradient boosting BDT approach.
 - Single classifier optimised for a range of LQ masses (mass-parameterised).
 - Kinematic variables used as inputs calculated in the rest frame of intermediate particles (LQ, top, Z) using jigsaw reconstruction.
 - Jet substructure variables used as inputs (μ channel only).



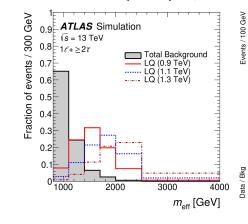

- Two main background processes: $Z(\rightarrow \mu\mu$, ee) + jets and tt̄ production
 - Estimated from MC with normalisation constrained by dedicated control regions.

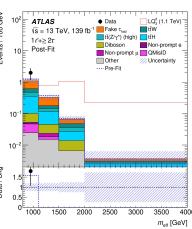
g g g

🛨 Background composition in signal regions:

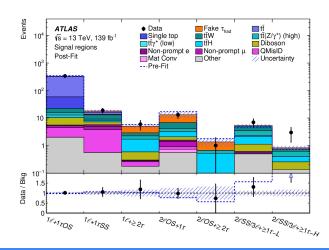
- \star Simultaneous fit of **3 signal regions** (BDT score) + **2 control regions** (number of events).
- \bigstar No significant excess observed over the SM background.
- \star Exclusion limit is set as a function of mass and branching fraction (B):
 - m_{LO} < 1.48 TeV (1.47 TeV) excluded for electrons (muons) for B=1

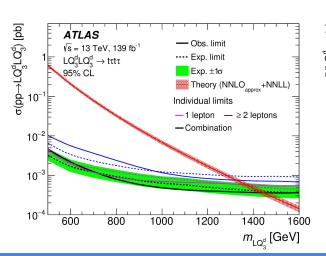
- **†** First dedicated ATLAS analysis in this final state.
- ★ Channel categorisation is based on **number of light leptons (e/μ)** and **number of hadronic τs**.

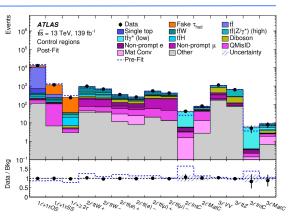

Number of e/µ

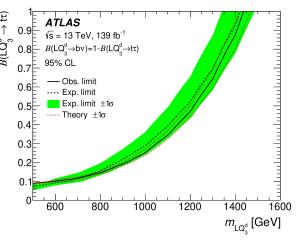

- ★ Major backgrounds (channel dependent):
 - $t\overline{t}$ (with fake non-prompt light leptons or fake τ_{had}), $t\overline{t}V,$ $t\overline{t}H,$ VV
- ★ 6 validation (VR), 17 control (CR) and 7 signal (SR) regions are defined orthogonal to each other.
 - Fitting $H_{T, lep}$ (= $\Sigma p_{T, lep}$) or **number of events** in CRs, m_{eff} in SRs.

- **DNN tau ID** for increased fake τ_{had} rejection at the same efficiency (<u>ATL-PHYS-PUB-2019-033</u>).
- **Kinematic reweighting** (N_{jet} dependent) to correct for $t\bar{t}$ mismodelling at high m_{eff} .

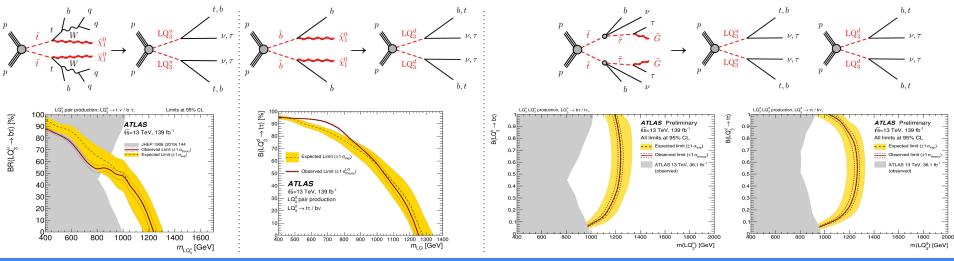

Main discriminating variable


$$\star m_{\text{eff}} = \sum_{\text{(jet, e, }\mu, \tau)} p_{\text{T}} + E_{\text{T}}^{\text{miss}}$$



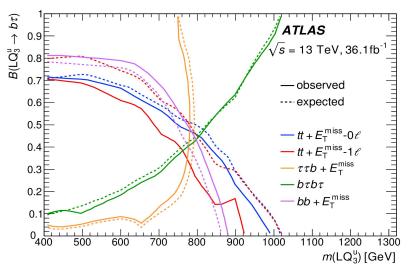


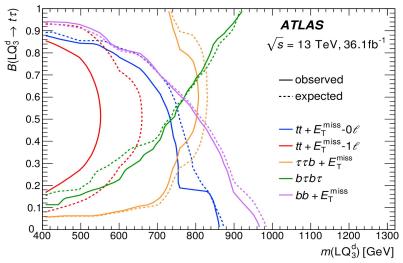
- \star Search range is from 0.5 to 1.6 TeV.
- ★ No significant excess observed over the SM background.
- \star Exclusion limit is set as a function of mass and branching fraction (*B*):
 - m_{LO} < 1.43 TeV (1.22 TeV) excluded for B = 1 (B = 0.5)
- 📩 Most stringent limits so far on this LQ decay mode.



- Various re-interpretations from SUSY analyses of **top** or **bottom squark** decays to neutralinos or gravitinos.
- \star No significant excess observed over the SM expectation value.
- Exclusion limit is set as a function of mass and branching fraction (*B*):

 - Exclusion up to \mathbf{m}_{LQ} < 1.24 TeV for tvtv (B=0). Exclusion up to \mathbf{m}_{LQ} < 1.26 TeV for bvbv (B=0). Exclusion up to \mathbf{m}_{LQ} < 1.25 TeV for b τ tv / t τ bv (B=0.5).




LQ combination

 \star Already public summary plots from the LQ₃ combination for 36.1 fb⁻¹:

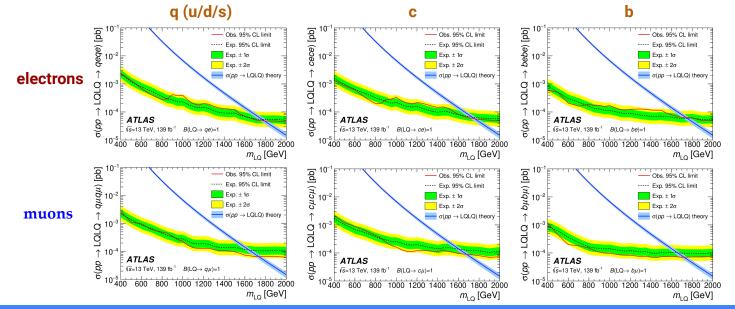
- Results for up-type and down-type LQs.

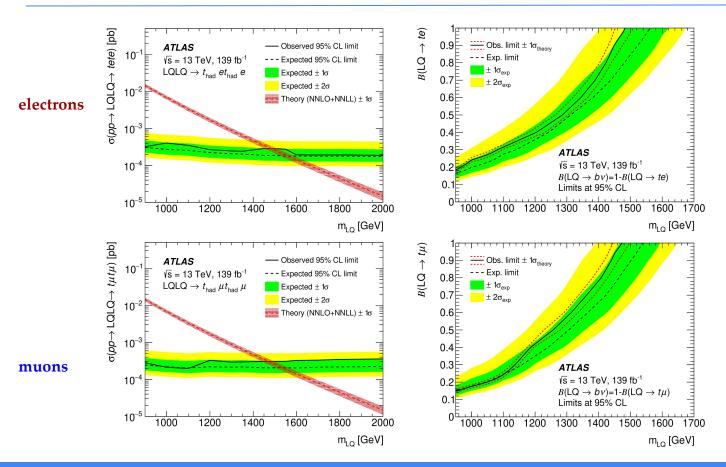
In the searches presented today (with the full Run 2 dataset) the mass exclusion is extended by ~250-500 GeV compared to these partial Run 2 dataset results.

- Their combination is expected to further extend the reach!

Summary & outlook

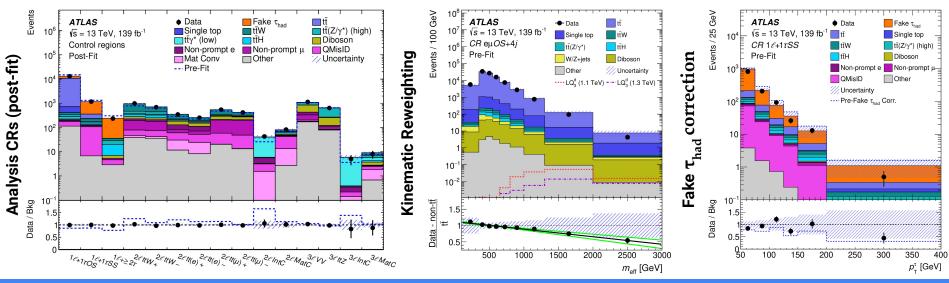
- ★ Very exciting and promising results from LQ searches in ATLAS with full Run 2 dataset!
 - Covering a wide range of phase space and final states.
 - Exploring flavour-diagonal and cross-generational models.
 - Significant improvement in sensitivity compared to previous searches.
- ★ No significant excess was observed over the SM expectation.
 - Still the exclusion limits are pushed to even higher masses.
 - Some of the most stringent limits available so far.
- ★ Most of these searches will also be interpreted in the context of **vector LQs**:
 - Higher cross section \rightarrow higher mass exclusion.
- Already planning a **combination** of the LQ results for the full Run 2.
- ★ Many new analyses are on the way stay tuned!

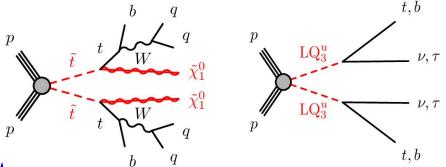

THANK YOU FOR YOUR ATTENTION!


Backup

15

LQLQ \rightarrow qeqe / qµqµ (q = u, d, s, c, b)

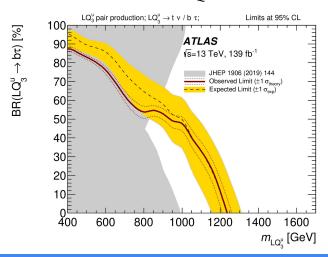

- No significant excess observed over the SM background in all of the six categories.
- \star Exclusion limit is set as a function of mass and branching fraction (B):
 - m_{LO} < 1.8 TeV (1.7 TeV) excluded for electrons (muons) for B = 1
- ★ Improved sensitivity by about 300 400 GeV in LQ mass compared to previous scalar LQ searches depending on the lepton flavour.

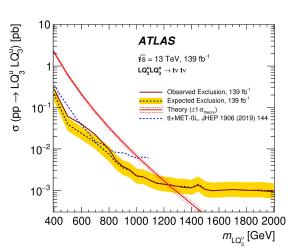

Stergios Kazakos DIS 2021 | 14-04-21 16

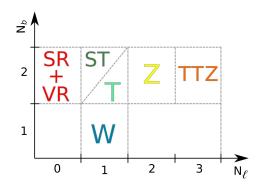
- \star Major backgrounds (channel dependent): tt (with fake non-prompt light leptons or fake τ_{had}), ttV, ttH, VV
 - Reducible background is split based on truth information: fake τ_{had} , non-prompt leptons, conversions
 - DNN tau ID for increased fake tau rejection at the same efficiency (ATL-PHYS-PUB-2019-033)
 - **Kinematic reweighting** (N_{iet} dependent) to correct for $t\bar{t}$ mismodelling at high m_{eff} .
 - Fake τ_{had} estimation with MC and correction derived in a dedicated fake τ_{had} CR.
 - Background normalisation factors acquired from a template fit using background "enriched" CRs.

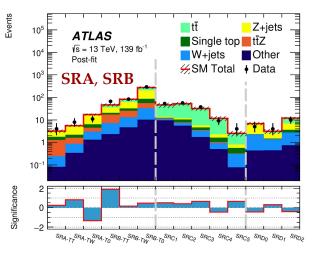
$LQ^uLQ^u \rightarrow t\nu t\nu$

Re-interpretation of a SUSY analysis targeting heavy **top squark pair production** decaying into massless neutralinos.

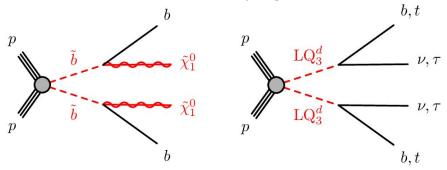

 \star tt + E_T^{miss} final state in the all-hadronic channel:

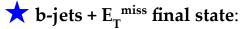

- E_T^{miss} trigger
- ≥ 4j, ≥ 2b, 0 ℓ selection in the signal regions
- 2 large-R reclustered jets for top candidates (R = 1.2)
- ★ Main backgrounds: tt̄, tt̄Z, V+jets, single top
- \bigstar Orthogonal signal regions categorised based on $\Delta m(\tilde{t}, \tilde{\chi}_1^0)$:
 - Sensitivity to LQ^u in the high Δm regions (SRA, SRB).

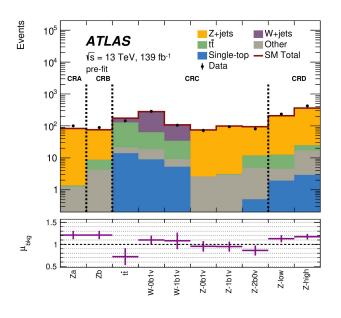



$LQ^uLQ^u \rightarrow t\nu t\nu$

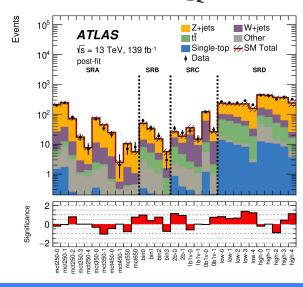
- \star Simultaneous fit of the LQ signal strength in the **SRA** & **SRB** regions:
 - Number of events is fitted after selections to maximise sensitivity.
- ★ No significant excess observed over the SM expectation value.
- \star Exclusion limit is set as a function of mass and branching fraction (*B*):
 - B = 0 corresponds to tvtv, B = 1 corresponds to btbt.
 - Exclusion of $\mathbf{m}_{LO} < 1.24 \text{ TeV}$ for B = 0.

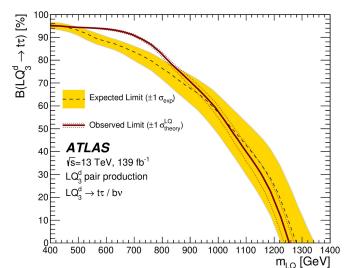


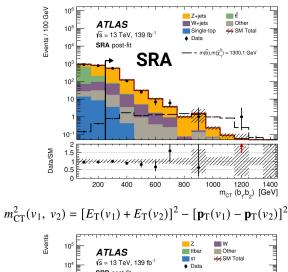


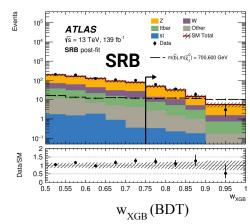


Re-interpretation of a SUSY analysis targeting heavy **bottom squark pair production** decaying into stable neutralinos.

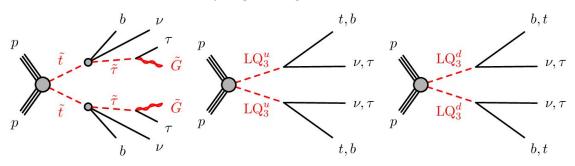


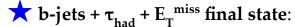

- E_T^{miss} trigger
- 2-4j, 2b, 0ℓ selection in the signal regions of interest
- DL1r b-tagging @77% eff
- ★ Signal region **SRA** targeting large values of $\Delta m(\tilde{b}_1, \tilde{\chi}_1^0)$, **SRB** targeting lower values of $\Delta m(\tilde{b}_1, \tilde{\chi}_1^0) < 200$ GeV:
 - Sensitivity to LQ^d in both regions (**SRA**, **SRB**).

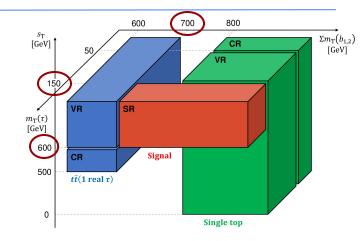



- ★ Main backgrounds: V+jets, tt̄
- ★ Control regions to constrain the normalisations of tt and V+jets.

- \bigstar Simultaneous fit of the LQ signal strength in the SRA & SRB regions.
- ★ No significant excess observed over the SM expectation value.
- \star Exclusion limit is set as a function of mass and branching fraction (*B*):
 - B = 0 corresponds to bvbv, B = 1 corresponds to $t\tau t\tau$.
 - Exclusion of $m_{LO} < 1.26 \text{ TeV}$ for B = 1.







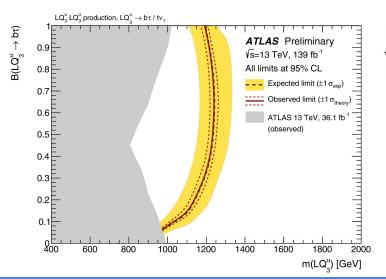
★ Re-interpretation of a SUSY analysis targeting heavy **top squark pair production** decaying into gravitinos.

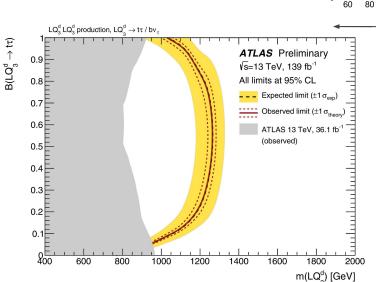
- single- and di-tau channels
- E_T^{miss} trigger (E_T^{miss} > 280 GeV for signal regions)
- Pre-selection: $\ge 2j$, 0ℓ , $\ge 2b$ ($\ge 1b$) in single- (di-) tau channel
- ★ Dominant backgrounds: tt̄, single-top
- ★ Single-tau channel is used for the re-interpretation:
 - Targeting cross-generational LQ decay modes.

Region categorisation based on $m_{\rm T}$ (τ), $s_{\rm T}^*$ and $\Sigma m_{\rm T}^{\rm T}(b_{1,2}^{\rm T})$ variables.

 $*s_{\mathrm{T}} = p_{\mathrm{T}}(\tau) + p_{\mathrm{T}}(\mathrm{jet}_{1}) + p_{\mathrm{T}}(\mathrm{jet}_{2})$

 $\sqrt{s} = 13 \text{ TeV}$. 139 fb


100 120 140


SR (multi-bin) Single-tau channel Other

 $p_{\tau}(\tau)$ [GeV]

160 180

- \star Simultaneous fit of the LQ signal strength using **4 CRs** & the **single-tau multi-bin SR** (three bins in tau p_{T}).
- ★ No significant excess observed over the SM expectation value.
- \star Exclusion limit is set as a function of mass and branching fraction (B):
 - Exclusion up to $\mathbf{m}_{1.0} < 1.25 \text{ TeV}$ for B = 0.5 (but or tube).

